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In any real fluid, the propagation of acoustic waves will always be accom-
plished by a dispersion or scattering action, resulting in part from the ostatic

. nature of the compressive modulus. While the resulting significant dissipation
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Firmoviscous and Anelastic Properties

of Fluids and Their Effects on the
Propagation of Compression Waves

Concept of a Dynamlc Bulk Modulus

In almost all dynamical treatments of fluld
flow, a statlc relationship between the fluid
density and the fluld pressure is assumed. For
liquids, this relationship 1s usually expressed
in terms of the fluld bulk modulus, K, as mani-
fested by:

dp = (&) dP = £dP it

where

v
1

fluid density, lb-secZ/rth

P fluld pressure, psf

K fluid bulk modulus, psf

On thils relatlonship nearly all classical
developments for wave propagation in slightly
compressible fluids have been based. It 1s the
primary aim of this paper to assume a more gener-
al dynamical relatlionship between pressure and
density and then cursorily to examlne the result-
ing effects on fluld phenomena such as acoustilc
wave propagation.

From a general macroscoplc and phenomenolog-
ical standpoint, it 1s not a prlorl reasonable
to assume such a purely statlic relationship be-
tween pressure changes AP, and density changes,

A: , of a fluld under dynamic condltions. Rather,

i1t is mo.:'e reasonable initially to assume a more
complete {albelt linear) form such as

3,89+ 3,88+3;Ap+ - =bAP+b,AP+ b, AP+
(2)
where the dots indicate time derlvatives and the
coefficients are in general undertermined. This

relationship also may be indicated 1n the equlva-
lent operational forms:

(£,axD") ap = (%okak) AP

Sbx DX ]
———— A
Za, Dk P

(3)
ar AP =

with D = d/dt denoting the differential operator.
Historically, only the very simplest of the

infinitude of posslbilities for Equation (2)

have been considered analytically or have been
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employed as descriptive models for reducing ex-
perimental data. However, for a long perlod
now, it has been Pecognized how arbitrary these
ideallzatlons have been; such awareness has be-
come particularly acute since the advent of gen-
eralized continuum mechanics and rheology (1 2,
3.0

We shall here conslder only the next approx-
imation beyond the classical; namely, that with
ap, aj, bp, by non-zero, and with all the rest
of the ak and by assumed vanishingly small. The
coefficlient aj 1s directly related to what has
been termed the second coefficlent of viscosity
(4, 3)

There 1s ample physical evidence to assume
that there exists a2 time lag between the appll-
catlon of pressure and the resulting change in
density. Using finlte 1lncremental changes this
phenomenon might be expressed mathematically in
the assumed form:

Ae _ 1 I/K; oc"(D-H]
e ”-ﬂ AP= K TD+1 AP (4)
where
“T = retardation time, sec
D = d/dt = differential operation, sec~1

1/K = (1/%;) + (1/K;) reciprocal bulk modulus
sq f't per 1t
e = (1/K1)/(1/K) a nondimensional ratio,
generally less than unity

Consequently a conJectural dynamic or an-
elastic bulk modulus (which is identical to the
static bulk modulus in the steady state) can
thus be deflned:

wr+1
j%, K [J“?:’+ 1 (5)

To illustrate the physical significance of
the dynamic bulk modulus, Fig. 1 demonstrates how
the density, £, or the pressure, P, of a fluid
would vary with time due to the application of
step change in elther quantity.

1 Ui:derlined numbers in parentheses deslgnate
References at end of paper,




(b) Step change in pressure

Fig.l Illustration of the dynamic bulk
modulus.

Effect on Wave Equations:

The concept of a dynamic bulk modulus can
now be utilized to modify the evaluation of ef-
fective fluid capacitance in the derivation of
the wave equatlons. For the purpose of compari-
son between the pure wave propagatlon along a
pipe and the dispersive propagation involving a
dynamic modulus, corresponding variables, equa-
tions, and model analogles for the two types will
be carried in a parallel fashlon as follows:

w
Momentum: — 31: = I% (6a)
Elasticity: — g? =C %5 (7a)
Dispersive
w
o @

W= «TD+1 |)p
3¢ ‘ﬁTx‘]}é"”

where, in addition to the varlables previously
defined:

s = distance along the pipe, ft

W welght rate of flow, 1lb per sec

I = fluld inertance per ft of pipe, sec?/ft3
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Fig.2 Model analogles for a fluld element having
a dynamic bulk modulus.

Cc tfluld capacitance per ft of pipe, ft

t = time, sec

Equations (6) and (7) can be written in a
more general form in terms of an impedance and
admittance operator that relate the relationships
between pressure and flow as stated in Equations
(8) and (9) for which Equations (6) and (7) are
merely speclal forms.

|

-3 _z(p) W (8)
ds
W _vy(m-P (9)

Y3

Having written these expresslons, the propa-
gation operator and the characteristic impedance
Zg for a fluld column can now be derived for the
dispersive case in a simllar manner to what 1s
usually done for the lossless case. Again for
the purpose of comparison, corresponding relation-
ships will be written for the two cases:

Pure Waye Propagation

Impeda
per unit } Z®)=1ID (108
length
Admittance
per unit } YCD)=CD (11a)
length
T =¢VEY
Propagation = e v IC D
Operator =TD= r* (12a)
Characteristic { o = 3/\(
Impedance I/ g( 13a)




.

PR

O,
/

=
®
®

MAGNITUDE

|
|
B Xy

TIME
Fig.3 Impulse response for an infinite -
DA, rsive Propaga
z(D) = (10b)

7D+1
Y(®)=C CTDH]D (11b)

C =¢vVEY
=¢VIC VEEer

= k‘r' Y (12b)
r To+
3
G ARAL
=Z, <7D+

where }, = total column length, ft; T = wave trav-
el time along the column, sec. The transfer op-
erator for a plpe also may be wrltten in a gen-
eralized matrix form:

- , (14)
P cosh " | Zusinh [T A
-— - = o . ~> e
W, %ishﬁnf‘z cosh I Wz
. .
—

where subscripts 1 and 2 denote upstream
and downstream conditions, respectively,

The solutlon to Relation (14) may be obtalned for
a given set of conditions and fluld terminations.
However, because of the complexity of [' and Z,
the general solution cannot be expressed in a
simple closed form as in the case of pure wave
propagation. There are several methods however
for approximating the solution for a specific

set of conditions.

Propagation of a Pressure Impulse in a Semi-
Infinite Column

For example, if a pressure impulse 1s ap-
plied at one end of a semi-infinite fluld column,
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Fig.4 cCalculated response curves. (a)

Impulse response = 1.90; (b) Impulse
response . = 6,33, 15.3; (¢) step re-
sponses.

the shape of this lmpulse at any point can be
approximated by certain distribution functlons
as 1t travels along the column.

Since 1f such a seml-infinite column the
pressure at any point is given by:

-r
P(s.t) =€ - P(o,¢) (15)
This result follows from Equations (12) with
Z.W(s,t) = P(s,t) (16)
which 1s true for the case 1n question. Follow-

ing the methods of one of the authors (6, 7),
the operator € ' may be expanded as follows:




axTD+1

e’ = e-'rv TD +1 (17)
- ?
6—TD+( 2 )Tz'D._... (18)

- ITED:...
er-.v-v-z_TsD e (19)

In Equation (17) the time constants have the
subsequent significance

Tp = T = mean deliy, sec

T, = [(l-c()T’t J1/2=dispersion time, sec

Hanin (i) and Vaughn (8) have demonstrated
for the case * = 0 that an impulse at the orl-
gin gets increasingly dispersed and attenuated
as 1t propagates. Following suggestions of the
present authors, Vaughn showed that 1ts shape
can be predicted accurately by the delayed chi-
square distribution function (II) and that the
1imiting form for very early development .can be
predicted by the complementary error functlon
{(I). For large intervals of time the pulse ap-
proaches the normal distribution function (III).

Plgs. 3 and 4 1llustrate these shapes
graphlcally, while the Appendix presents the cor-
responding mathematical formulas, for the impulse
and step response of a semi-infinite fluld medl-~
um,

However, the two derlved constants, Th and
Ts» adequately define behavior for all types of
disturbances and boundary conditlons. This fact
permlits determination of the fluld propertles
from any adequate and consistent observatlonal
data.

Conclusions

All experimental data known to the authors
reinforce the bellef that such a compressive
model as that proposed in the foregoing 1is of
the minimum complexity which will still explain
the scatterlng actlon readlly apparent ln ob-
served behavilor of fluids. Thus we strongly
urge that a concerted effort be made to reduce
such observations to the polnt where the anelas-
tic propertles of the more common fluids can be
established firmly.
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APPENDIX

Derivatlion of Dynamlc Response Equatlons

Purely Firmoviscous Propagation (- = 0).
For thls case it 1s possible to simplify analy-
sils by first normallzing, or nondimensionaliz-
ing, all variables and parameters through intro-
ducing into Equation (15) the substitutions:

(T/) - >
(z)-¢ (4)

NORMALIZED DERIVATIVE:D = ( T ) * D

NORMALIZED DISTANCE: X

n

NORMALIZED TIME: o~

"

Thus we may now treat the generalized operator:
-r -xXD/V
€T =F(%,D) = g XV/Vi+d

The condition i!)-? & corresponds to
the instantaneous response, t =% 0, and ylelds:

En F(2X,D) =T (€)= e-%XVD  (5)

This operator appllied to a unit impulse or
unit step results in the consequent impulse re-
sponse and step response, in the form:

X Xar
z?ﬁﬁik-e' ()

1- erf (2 /V727)

IMPULSE RESPONSE: fo, (2, 7)

i

F, (2, 7)

STEP RESPONSE:




Tables of the functlons indlcated are readi-
ly avallable in standard handbooks, such as that

of Burington and May (10).
For the opposite conditions, when the dis-

turbance has traveled a great distance from the
origin, then t-¥ ¢ao, -» 0, and we may consider
the limiting operator:

. (-4
57 F(XD) =F, (o) = X2+ 2D (1)

corresponding to the Impulse and step responses:
(Z-%)*t

- 2%
(E)

F. (0, 9)=[%.dt =8

Thus these results correspond to the well-known
Gausslan distribution or normal probabllity dis-
tribution, with mean = variance =%(C. This func-
tion 1s tabulated 1in many handbooks, such as

that previously cited (10).

mMPULSE RESPONSE: fo (X, 9) = —‘r;—;—i €

STEP RESPONSE:

Between these two extremes many models would
be possible. That used by Vaughan (9), as men-
tioned earlier, 1s a "delayed chi-square distri-
bution," which 1s an approximation in the form:

Fy, (2¢,D) = e " 2/G+12)2  (r)

with Ty, Tp, normalized time constants and m the
number of degrees of freedom of the chi-square
distributlon, An excellent fit 1s obtained by
matching the first three impulse moments, which
yields the conditlions:

T = ()X = oo X (@)
T %8 = 1.125

wm = ("260)0 = 1.5802C

The corresponding values of impulse response,
fl/h' and step response Fl/mt are readlly found
from any of the availlable tables of the chi-
square d_istribution such as those previously
cited (10).
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